Abstract

Diabetes mellitus induces a pattern of myocardial pathology known as a specific diabetic cardiomyopathy and to evaluate the presence of this phenomenon we measured various parameters of left ventricular function by echocardiography as it is available in merjan teaching hospital, and these parameters including:

1. Ejection fraction
2. Fractional shortening
3. Inter-ventricular septal thickness
4. Posterior left ventricular wall thickness

The results of our study show that diabetic patients have left ventricular dysfunction as compared with control group by a reduction in EF and FS and increase in the thickness of (IVS) and (pw) of the left ventricle. (The results are statistically significant, P < 0.005).

Although patients with non-insulin dependent diabetes developed left ventricular dysfunction more than patients with insulin dependent diabetes and female patients are more affected than male patients especially in NIDDM (the difference is statistically not significant, P > 0.1).

LVD occurs more frequently with prolonged duration of the disease in both types of diabetes (the difference is statistically not significant, P > 0.1).

Abbreviations

LVD left ventricular dysfunction
DM Diabetes Mellitus
IDDM Insulin dependent diabetes mellitus
NIDDM Non-insulin dependent diabetes mellitus
EF Ejection fraction
FS Fractional shortening
Introduction

Cardiovascular disease is the most common cause of death in patient with diabetes mellitus[1]. Variable evidence has implied the existence of a specific cardiac disease of diabetes termed variously as Diabetic Cardiopathy or Diabetic Cardiomyopathy, which might...
contribute to increase mortality of diabetes. This evidence has accumulated from non-invasive cardiac testing and has incorporated pathological abnormalities mainly from post-mortem material. [2, 3]

Specific diabetic cardiopathy has been suggested to be partly involved in the development of cardiac failure in diabetic patients. [4, 5]

Congestive heart failure occurs more frequently in diabetic than non-diabetic patients despite a similar extent of coronary artery disease as noted in several studies. [6, 7]

Both types of diabetes are associated with increased cardiovascular complications, the most common of which are ischemic cardiomyopathy and left ventricular dysfunction. The extent of an independent disease, diabetic cardiomyopathy, was suggested by initial anatomic studies, experimental models, and more recently, by epidemiological studies. The exact cause of this ventricular dysfunction is not known, several mechanism have been proposed, such as metabolic abnormalities of glucose transport, cellular overload in fatty acid metabolites, alteration in calcium uptake by the sarcoplasmic reticulum leading to cellular calcium overload, coronary microangiopathy, structural collagen abnormalities, interstitial and perivascular fibrosis or the presence of autonomic neuropathy. The condition is characterized by abnormal left ventricular filling suggesting poor compliance or prolongation of left ventricular relaxation.[8,9,10]

So the aim of our study is to evaluate the presence of pre-clinical myocardial damage in insulin and non-insulin dependent diabetic patients by assessment with echocardiography and the results compared with that of control subjects.

The echocardiographic assessment of left ventricular function in this study was done by measuring:

\[
\text{EDV - ESV} \times 100 \quad \text{EDV} \\
\]

1. EF which is equal to \[
\text{-------------} \times 100 \\
\text{EDV}
\]

\[
\text{LVDD - LVDS} \times 100 \quad \text{LVDD} \\
\]

2. FS which is equal to \[
\text{-------------} \times 100 \\
\text{LVDD}
\]

3. Inter ventricular septal thickness.

4. Posterior left ventricular wall thickness.

Adult normal values: [11,12]
Patients and Methods

At merjan teaching hospital we studied 50 diabetic patients who attended babel centre for diabetes. 25 patients (50%) 12 male and 13 females on insulin therapy, aged 16-38 years (mean age 32.4 years) and 25 patients (50%) 10 male and 15 female on oral hypoglycemic agents aged 45-68 years (mean age 52.3 years).

The duration of the disease was 5 years and more (5-22 years) were only included in the study.

Forty non-diabetic control subjects were randomly selected from the population divided into two groups: 20 subjects in the first group (C1) comprised age and sex matched for insulin dependent diabetic patients and 20 subjects in the second group (C2) comprised age and sex matched for non-insulin dependent diabetic patients as shown in table (1).

Group C1 aged 15-38 years, (mean age 35.8 years) and group C2 aged 43-67 years, (mean age 50.6 years).

Diabetic patients and non-diabetic control subjects were identified from the initial study population by the following exclusion criteria:

1. History of myocardial infarction, angina pectoris, valvular heart disease and any other cardiac disease.
3. History of any disease known to affect cardiac function such as thyroid diseases.
5. Drug therapy other than insulin or oral hypoglycemic agents.

On examination of both diabetic patients and control subjects the heart rate range from 70-90 beats/min (because the heart rate outside 60-100 beats/min limits the alteration in the diastolic in flow), [11,13] also all were normotensive (blood pressure≤ 130/80) and all had normal resting ECG at the time of the study.

The diabetic patients and control subjects were asked to attend the echocardiographic department and examined by (Philips Envisor, version B.O.2) and recording :

<table>
<thead>
<tr>
<th></th>
<th>EF</th>
<th></th>
<th>FS</th>
<th>31% ± 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS</td>
<td>9 ± 3 mm</td>
<td></td>
<td>PW</td>
<td>9 ± 3 mm</td>
</tr>
</tbody>
</table>

Ejection fraction, fractional shortening and thickness of interventricular septum and posterior wall of the left ventricle at end-diastole. [11,14]
Table 1 Clinical characteristic of the study groups

<table>
<thead>
<tr>
<th></th>
<th>Male with IDDM</th>
<th>Female with IDDM</th>
<th>Control group C1</th>
<th>Male with NIDDM</th>
<th>Female with NIDDM</th>
<th>Control group C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>18-35 years</td>
<td>16-38 years</td>
<td>15-38 years</td>
<td>45-64 years</td>
<td>50-68 years</td>
<td>43-65 years</td>
</tr>
<tr>
<td>Duration of diabetes</td>
<td>6-18 years</td>
<td>7-22 years</td>
<td>6-15 years</td>
<td>5-18 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart rate</td>
<td>70-90 beat/min.</td>
<td>70-90 beat/min.</td>
<td>80-90 beat/min.</td>
<td>75-90 beat/min.</td>
<td>80-90 beat/min.</td>
<td>80-90 beat/min.</td>
</tr>
<tr>
<td>Systolic blood pressure</td>
<td>110-130 mm Hg</td>
<td>125-130 mm Hg</td>
<td>120-130 mm Hg</td>
<td>120-130 mm Hg</td>
<td>120-130 mm Hg</td>
<td>120-130 mm Hg</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>70-80 mm Hg</td>
<td>75-80 mm Hg</td>
<td>75-80 mm Hg</td>
<td>70-80 mm Hg</td>
<td>70-80 mm Hg</td>
<td>70-80 mm Hg</td>
</tr>
</tbody>
</table>

Results

In our study, 50 diabetic patients and 40 control subjects matched for age and sex, all with normal heart rate, blood pressure and resting ECG were evaluated by echocardiography for the presence of left ventricular dysfunction.

Table (2): Shows the results of echocardiographic study of insulin dependent, non-insulin dependent and control groups (C1 and C2) these results are shown in:

Figure (1): Shows a reduction in EF in insulin dependent group compared with C1 control group and in non-insulin dependent group compared with C2 control group. (The results are statistically significant, P < 0.005).

Figure (2): Shows a reduction in FS in insulin dependent group compared with C1 control group and in non-insulin dependent group compared with C2 control group. (The results are statistically significant, P < 0.005).

Figure (3): Shows an increase in the thickness of inter-ventricular septum between insulin dependent group compared with C1 control group and in non-insulin dependent group compared with C2 control group.
The results are statistically significant, \(P < 0.005 \).

Figure (4): Shows an increase in the thickness of posterior left ventricular wall compared with C1 control group and in non-insulin dependent group compared with C2 control group. (The results are statistically significant, \(P < 0.005 \)).

Table (3): Shows that (44\%) of non-insulin dependent diabetic patients developed LVD while only (28\%) of insulin dependent diabetic patients developed LVD. (the results are statistically not significant, \(p > 0.1 \)).

Also shows that 18 patients (36\%) were found to have left ventricular dysfunction.

Table (4): Shows that (43\%) of diabetic female developed LVD while only (27\%) of male developed LVD. (The results are statistically not significant, \(P > 0.1 \)).

Table (5): Shows the incidence of left ventricular dysfunction in female according to the type of diabetes. (The results are statistically not significant, \(p > 0.1 \)).

Table (6): Shows the incidence of left ventricular dysfunction in male according to the type of diabetes. (The results are statically not significant, \(P > 0.1 \)).

Table (7): Shows that LVD occurs more frequently with prolonged duration of the disease in both IDDM and NIDDM. (The results are statistically not significant, \(P > 0.1 \)).

Table 2 Results of echocardiography study

<table>
<thead>
<tr>
<th></th>
<th>IDDM 25 patients</th>
<th>Control group C1 20 patients</th>
<th>NIDDM 25 patients</th>
<th>Control group C2 20 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>55.1% ±7.6</td>
<td>67.9% ±3.4</td>
<td>51.8% ±6.8</td>
<td>64.2% ±2.8</td>
</tr>
<tr>
<td>FS</td>
<td>23.7% ±4.2</td>
<td>31.2% ±0.9</td>
<td>21.7% ±3.9</td>
<td>29.8% ±0.7</td>
</tr>
<tr>
<td>IVS</td>
<td>10.8 mm ±1.6</td>
<td>9.6 mm ±0.8</td>
<td>11.9 mm ±1.1</td>
<td>9.8 mm ±0.7</td>
</tr>
<tr>
<td>PW</td>
<td>11.0 mm ±1.4</td>
<td>9.7 mm ±1.3</td>
<td>12.3 mm ±1.3</td>
<td>10.2 mm ±0.9</td>
</tr>
</tbody>
</table>

Mean ± SD
Figure 1 The results of (EF) from echocardiographic study

Figure 2 The results of (FS) from echocardiographic study
Figure 3 The results of inter ventricular septal thickness from echocardiographic study

Figure 4 The results of posterior left ventricular wall thickness from echocardiographic study
Table 3 Left ventricular dysfunction in diabetic patients (according to the type of diabetes)

<table>
<thead>
<tr>
<th>Type</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>IDDM</td>
<td>7</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>NIDDM</td>
<td>11</td>
<td>44</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>36</td>
<td>32</td>
</tr>
</tbody>
</table>

P > 0.1 not significant

Table 4 Left ventricular dysfunction according to the sex of diabetic patients

<table>
<thead>
<tr>
<th>Sex</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Female</td>
<td>12</td>
<td>43</td>
<td>16</td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>36</td>
<td>32</td>
</tr>
</tbody>
</table>

P > 0.1 not significant

Table 5 Left ventricular dysfunction among female patients

<table>
<thead>
<tr>
<th>Type</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>IDDM</td>
<td>4</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>NIDDM</td>
<td>8</td>
<td>53</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>43</td>
<td>16</td>
</tr>
</tbody>
</table>

P > 0.1 not significant
Table 6 Left ventricular dysfunction among male patients

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th></th>
<th>Negative</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>IDDM</td>
<td>3</td>
<td>25</td>
<td>9</td>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>NIDDM</td>
<td>3</td>
<td>30</td>
<td>7</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>27</td>
<td>16</td>
<td>73</td>
<td>22</td>
</tr>
</tbody>
</table>

P > 0.1 not significant

Table 7 Left ventricular dysfunction according to the duration of IDDM and NIDDM

<table>
<thead>
<tr>
<th></th>
<th>LVD in diabetes < 10 years</th>
<th>LVD in diabetes ≥ 10 years</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>IDDM</td>
<td>2</td>
<td>29</td>
<td>5</td>
</tr>
<tr>
<td>NIDDM</td>
<td>3</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>28</td>
<td>13</td>
</tr>
</tbody>
</table>

P > 0.1 not significant

Discussion

The existence of diabetic cardiomyopathy has been proposed because evidence has accumulated for the presence of myocardial dysfunction in diabetic patient in the absence of ischemic, valvular or hypertensive heart disease. [15, 16]

From our study we found that EF and FS are decreased in diabetic patients than in control subjects (these results are statistically significant, p<0.005), also we found that interventricular septum and posterior left ventricular wall are thicker in diabetic patients than in control subjects (these results are statistically significant, p<0.005), so 18 patients developed LVD among 50 diabetic patients included in this study. Also we found that left ventricular dysfunction occurs more frequently in non-insulin dependent diabetic patients than in insulin dependent diabetic patients, (but the results are statistically not significant p<0.1) and this may be due to a low number of patients [17], and these results may be related to that insulin dependent diabetic patients are quite well identified from the disease onset and clinical features appeared as soon Langerhan's Islets are damage by viral or auto immune events while in
NIDDM an overt clinical feature appeared slowly, in which vascular and myocardial damage started before the dysmetabolic events become clear, while hyperinsulinaemia, microalbuminuria, advanced glycated end products and lipid abnormalities could lead to reduction in ventricular compliance which if long standing, may enhance left ventricular mass \[18\]. The development of left ventricular muscle stiffness due to elevated tissue calcium levels, associated with defective sacroplasmic reticular calcium-ATPase and a redistribution of myosin isoenzymes from the most active V1 from to the least active V3 from was experimentally demonstrated in NIDDM, so vascular wall changes and increase left ventricular mass typically associated with generalized cardiovascular metabolic disease might be the primary consequence of NIDDM, also aging process may play a role in NIDDM, which is principally a disease of middle age, and elderly while IDDM is principally a disease of young. \[19,20\]

Also we found that female patients are more affected than male patients especially in NIDDM, we found also that left ventricular dysfunction occurs more frequently with prolonged duration of the disease, (the results are statistically not significant, \(p<0.1\)), and these results may be due to close relationship between the duration of diabetes and the presence of microangiopathic complications, which has been reported by some authors as diabetic myocardiopathy which is a disease showing intramural microvascular endothelial proliferation, swelling as well as sub-endothelial accumulation of acid glycogen deposition cells and increase amount of collagen, glycoproteins, triglycerides in the myocardium. \[21,22\]

According to this study and others done before using different methods we found that Myocardial involvement in D.M. is functionally important and increases with prolongation of the duration of the disease initially impairing early diastolic relaxation and when more extensive, probably in combination with hypertrophy and reduced myocardial perfusion further impairing relaxation and contraction such abnormality have been called a diabetic cardiomyopathy. \[23,24\]

Conclusions and Recommendations

1. Ejection fraction and fractional shortening are decreased in diabetic patients than in control subjects.
2. Inter-ventricular septum and posterior left ventricular wall are thicker in both insulin dependent diabetic patients and non-insulin dependent diabetic patients than in control subjects.
3. The incidence of LVD is numerically more in non-insulin dependent diabetic patients than in insulin dependent diabetic patients and in female patients more than in male patients and it is related to the duration of diabetes, but these results are statistically not significant and this may be due to a low number of patients included in this study.
4. Our study supports previous findings that LVD occurs in diabetic patients without overt evidence of heart disease.
5. Every patient with D.M. should be examined by echocardiography especially in non-Insulin dependent diabetic patients to detect early cardiac changes.
6. We have to start treatment for any diabetic patient with LVD, as soon as possible, to improve the prognosis.
References

10. Abnormalities suggestive of cardiomyopathy in patient with type (2) diabetes of relatively short duration ; Department of Int. Med.; Endocrinology and Metabolism, Hospital , Nice , France . Diab . Metab. 1994 Octr.,20(5): 473-80
An up-to-date summary of the current classification of diabetes and clinical practice recommendations for the management of diabetic patients, including goals of treatment.

