Original Research Article

Association Ghrelin Level with Insulin Resistance in Type 2 Diabetes Mellitus Obese Patients

Methak Jassim Al-Jboori1* Ali Hammad Al-Saadi2 Haider Kamel Al-Saadi2
1College of Science, University of Al-Mustansiriyah, Baghdad, IRAQ
2College of Science, University of Babylon, Hilla, IRAQ

*E-mail: missaliraq@yahoo.com

Abstract
The aim of this study was to investigate the relationship between serum ghrelin concentration with markers of insulin resistance and obesity in type 2 diabetes, Evaluation of the possible association of the obesity in type 2 diabetes and gene polymorphism. The results show that the Levels of ghrelin (mean ± S.E) ghrelin was significantly lower in obese type 2 diabetes compared to control group (p< 0.0001) and Levels of ghrelin did not differ between the 49 men and the 59 women. smoking history was significantly. ghrelin showed significant negative correlation with BMI (r= -0.62), Waist/Hip ratio(r= -0.68), SBP (r= -0.53) and DBP(r= -0.43).A significant negative correlation between Ghrelin level and FBG (r= -0.55), HbA1c (r= -0.60), Insulin (r= -0.44) and insulin resistance index (HOMAIR) (r= -0.46). There was an inverse correlation between Ghrelin level and cholesterol(r= -0.15), triglycerides(r= -0.38) and VLDL(r= -0.38) respectively, while there is no significant correlation with LDL. As well as there were significant positive correlation between Ghrelin level and HDL. A significant negative correlation between Ghrelin level and Systolic bloodpressure and diastolic blood pressure (r= -0.53 and r= -0.43) was observed in the obese type 2 diabetes groups.

Key words:Ghrelin, Diabetes Mellitus,Obese

The aim of this study was to investigate the relationship between serum ghrelin concentration with markers of insulin resistance and obesity in type 2 diabetes, Evaluation of the possible association of the obesity in type 2 diabetes and gene polymorphism. The results show that the Levels of ghrelin (mean ± S.E) ghrelin was significantly lower in obese type 2 diabetes compared to control group (p< 0.0001) and Levels of ghrelin did not differ between the 49 men and the 59 women. smoking history was significantly. ghrelin showed significant negative correlation with BMI (r= -0.62), Waist/Hip ratio(r= -0.68), SBP (r= -0.53) and DBP(r= -0.43).A significant negative correlation between Ghrelin level and FBG (r= -0.55), HbA1c (r= -0.60), Insulin (r= -0.44) and insulin resistance index (HOMAIR) (r= -0.46). There was an inverse correlation between Ghrelin level and cholesterol(r= -0.15), triglycerides(r= -0.38) and VLDL(r= -0.38) respectively, while there is no significant correlation with LDL. As well as there were significant positive correlation between Ghrelin level and HDL. A significant negative correlation between Ghrelin level and Systolic bloodpressure and diastolic blood pressure (r= -0.53 and r= -0.43) was observed in the obese type 2 diabetes groups.

Key words:Ghrelin, Diabetes Mellitus, Obese

Accepted 24 February, 2016
Introduction

Obesity and associated diabetes mellitus are epidemic through the world; obese individuals characteristically manifest with insulin resistance and hyperinsulinemia, which predispose to glucose intolerance, diabetes and cardiovascular disease1 Type 2 diabetes mellitus is a heterogeneous and polygenic disease associated with abnormal insulin secretion or defects of insulin action [1,2].

Ghrelin an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHSR), was originally discovered in extracts of rat and human stomach, where it is localized in the endocrine X/A-like cells of the fundus mucosa representing about 20% of gastric mucosal cells in humans [3,4].

Ghrelin plays a role in both short and long term regulation of energy balance, appetite, and weight gain. This hormone also increases gastric motility, gastric and pancreatic secretions, regulates glucose and lipid metabolism, stimulates cellular differentiation in adipose tissue, inhibits apoptosis in adipocytes, inhibits lypolysis and stimulates lipogenesis. In long term energy balance, ghrelin increases food intake, decreases the use of fat as ametabolic fuel and promotes fat deposition [8,9].

There is a growing body of evidence indicating a suppressive role of ghrelin in the release of insulin from the pancreatic islets. Low ghrelin concentrations were shown to associate independently with Type 2 diabetes and insulin resistance. Circulating ghrelin concentrations are also reduced in the healthy offspring of type 2 diabetic patients and the compensatory hyper insulinaemia due to insulin resistance was associated with significantly reduced ghrelin concentrations [10]. Poykko et al.[11] showed that fasting plasma concentrations of total ghrelin were lower among subjects with Type 2 diabetes compared to those without Type 2.

The human ghrelin gene (GHRL) spans 5 kb of the genomic DNA on the short arm of chromosome 3 (3p25-26) and contains six exons (2 are noncoding), same as the mouse gene and 4 introns and encodes a 511 bpRNA. The short first exon contains only 20 bp, which encode part of the 5-untranslated region [12,13].

There are two different transcriptional initiation sites, resulting in two distinct mRNA transcripts, of which one is the main form of human ghrelin mRNA in vivo, one occurs at -80 and the other at -555 relative to the ATG initiation codon, resulting in two distinct mRNA transcripts (transcript-A and transcript-B). In humans, parts of exons 1 and 2 of the ghrelin gene code for the ghrelin peptide and exon 3 encodes the peptide hormone obestatin (figure 2-4[14]).

Materials and Methods

A total of 108 obese type 2 DM patient (cases) aged 30–75 years; 49 men and 54 women, While collecting data, those (93) apparently healthy (control group) that included 46 male and female 47 with matched age range 30-75 years.

Study Design and Data Collection Time

A case-control study was conducted between 1st of December 2013 till 30th of April 2014 and it was carried out at the diabetic center/ Merjan Teaching Hospital in Babylon province/Iraq.

All subjects were subjected to:

1- Full history taking with particular emphasis on age, family history of diabetes, history of any systemic diseases e.g. diabetes, hypertension, dyslipidemia or history of any associated diseases and any drug intake.
2- Thorough clinical examination with special on:

Blood pressure was measured under standard conditions. Measurements were obtained for each patient three times by the auscultation method. Blood pressure was measured in the right arm with the subject seated and rested for 5 min, and the measurements were obtained for each subject three times by using Mercury sphygmomanometer and suitable calibrated cuff. The patient was seated with the back supported and the upper arm bore without constrictive clothing. The legs should not be crossed. The arm was supported at heart level and the bladder of the cuff was encircled at least 80% of the arm circumference with the stethoscope at the elbow crease over the brachial artery. Hypertension was defined as a systolic blood pressure ≥ 135 mmHg and/or a diastolic blood pressure ≥ 85 mmHg, repeated 2–3 times over a 6-week interval or if the patient was already on antihypertensive medication [15].

Anthropometric assessments

The anthropometric techniques used to measure weight and height were recommended by Lohman et al. (16). All anthropometric measurements were taken with stress on body height and weight that were measured in light clothes using a portable stadiometer.

- **Body weight** was measured to the nearest 0.5 Kilograms (kg) with subjects barefooted and wearing light indoor clothes. Body height was recorded to the nearest 0.5 centimeter (cm).

- **BMI** was calculated as the ratio of body weight in kg to body height in meters squared expressed as Kg/m2.

- **Waist circumference** (WC) was measured at the distal third of the line from the xyphoid process to the umbilicus.

Hip circumference was measured around the point with the maximum circumference over the buttocks.

Waist/hip ratio (WHR) was calculated as waist circumference (cm) divided by hip circumference (cm) [17].

Blood samples were taken with subjects having fasted for at least 12 hours. The blood sample was analyzed for lipid profile including: total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), and high density lipoprotein-cholesterol (HDL). Serum lipids were assayed by standard enzymatic methods [18].

LDL is not directly measured in the routine lipid panel; instead it is calculated by the Friedewald equation. This equation is: LDL Cholesterol = Total Cholesterol - HDL cholesterol - (Triglycerides/5).

Laboratory investigation:

I- **Insulin resistance** was calculated as proposed by Matthewes et al. for homeostasis model assessment for insulin resistance (HOMA-IR) index. HOMA-IR was computed as follows: [fasting insulin (mU/L) fasting glucose (mmol/L)]/22.5 [19].

II- **Fasting serum glucose:**

Serum glucose was measured using a single reagent glucose method based on a technique [20].

III- **Fasting serum insulin using ELISA technique:**

The BioSource INS-EASIA (manufactured by Monobindinc. USA) is a solid phase Enzyme Amplified Sensitivity immunoassay performed on microtiterplates. It is an immunoenzymetric assay for the in vitro quantitative measurement of human insulin (INS) in serum. Results of the samples are determined using the standard curves.

IV- **Serum Acylated Ghrelin ELISA technique:**

Acylated Ghrelin was measured by an enzyme linked immunoassay Human A-GHRL ELISA Kit obtained from the Elabscience (China).

V- **Genomic DNA extraction**

DNA was isolated and purified from whole blood (EDTA) according to the protocol provided by the manufacturer (Geneaid / Taiwan). DNA was stored at −20°C till the time of use.
Determination of Ghrelin gene

Amplification target sequence of Ghrelin gene using the **Forward primer** 5'-AGCCTCCTGCTCCTCGGCAT-3' and that of the Reverse primer 5'-TGTGGCCGATCAGTTGTCGGCT-3'.

Was used master A master premix of Biooneer was used with a components. PCR optimization was done as a first step by using a gradient temperature ranging from 53°C to 64°C. After the determination of optimum annealing temperature (59°C). Amplification reactions were carried out by using GTC Series thermocycler (Cleaver Scientific /UK) apparatus. After Determination of the optimum annealing temperature the following program was set in the thermocycler to amplify the target DNA fragments.

Detection of PCR amplification products was performed by size fractionation on 1% agarose gel electrophoresis. SSCP analysis is generally considered to be most suitable for the detection of mutations in short stretches of DNA. Hence, the size of PCR fragments investigated are usually in the range of 175-250 bp. It is important to optimize the PCR reaction to minimize unwanted products which may interfere with gel analysis. The PCR products should be evaluated for purity by agarose gel electrophoresis before being loaded onto an SSCP gel.

Statistical Analysis

The Statistical Analysis System- SAS [21] program was used to effect of difference factors in study parameters. Chi-square test was used to significant compare between percentage and least significant difference –LSD test was used to significant compare between means in this study. Genetic analysis was performed using Chi-square test. P values less than (0.05) is considered significant and less than (0.01) is considered highly significant.

Results

This study included 108 obese type 2 diabetic: 49 males (45.3%), 59 females (54.7%) with a mean age of 52.46 ±0.82 years and Non obese control: 46 males (49.4%), 47 females(50.6%) with a mean age of 46.60 ± 1.22 years. There was no significant statistical difference in between cases and controls as regards sex. 61.4% of the total samples have a family history for diabetes mellitus and 49.46% in controls (P=0.231).

A comparison among cases according to different anthropometric, clinical and laboratory parameters is displayed in table (1),the subjects in obese type 2 diabetes patients exhibit higher significant in Body mass index (BMI), waist circumference (WC) and Waist/hip ratio (WHR) compared to those in control groups (all P<0.0001). A statistically highly significant difference were found between obese type 2 diabetic and control as regards Hemodynamic variables (Systolic blood pressure and Diastolic blood pressure).

Physical activity In adequate and smoking habit were documented in (88.46%) and 26.15% of the obese subjects.

Insulin level was significantly higher in obese type 2 patients compared to control group (p< 0.0001) , while ghrelin was significantly lower in obese type 2 diabetes patients compared to control group (p<0.0001).There was no significant statistical difference in between Male and female as regards ghrelin levels.
Table 1: Anthropometric, Clinical and Laboratory Data among Cases and Controls

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control groups No.(93)</th>
<th>Obese type 2 diabetes groups No.(108)</th>
<th>T-test value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>46.60 ± 1.22</td>
<td>52.46 ±0.82</td>
<td>3.923 *</td>
<td>0.0491</td>
</tr>
<tr>
<td>Male (%)</td>
<td>49.46%</td>
<td>45.3%</td>
<td>2.072 NS</td>
<td>0.3662</td>
</tr>
<tr>
<td>Female (%)</td>
<td>50.57%</td>
<td>54.7%</td>
<td>1.71 NS</td>
<td>0.513</td>
</tr>
<tr>
<td>BMI kg/(m²)</td>
<td>23.10 ± 0.13</td>
<td>34.03 ± 0.45</td>
<td>1.072 **</td>
<td>0.0001</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>83.47 ± 0.83</td>
<td>111.67 ± 2.59</td>
<td>9.312 **</td>
<td>0.0028</td>
</tr>
<tr>
<td>Waist/hip ratio</td>
<td>0.877 ± 0.003</td>
<td>1.04 ±0.004</td>
<td>0.0108 **</td>
<td>0.0001</td>
</tr>
<tr>
<td>History of diabetes (%)</td>
<td>27(29.07%)</td>
<td>66(61.43%)</td>
<td>10.317 **</td>
<td>0.0001</td>
</tr>
<tr>
<td>Hemodynamic variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic blood Pressure(mm Hg)</td>
<td>115.74 ± 1.82</td>
<td>151.09 ± 1.71</td>
<td>5.021 **</td>
<td>0.0001</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>78.90 ± 1.25</td>
<td>93.76 ± 1.17</td>
<td>3.451 **</td>
<td>0.0001</td>
</tr>
<tr>
<td>Life style variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical activityInadequate</td>
<td>73(78.49%)</td>
<td>93(88.46%)</td>
<td>5.84 *</td>
<td>0.0482</td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>14(15.05%)</td>
<td>28(26.66%)</td>
<td>5.942 *</td>
<td>0.439</td>
</tr>
<tr>
<td>Insulin (μIU/mL)</td>
<td>7.33 ± 0.42</td>
<td>30.54 ± 1.99</td>
<td>4.719 **</td>
<td>0.0001</td>
</tr>
<tr>
<td>Ghrelin (pg/ml)</td>
<td>1244.59 ± 39.71</td>
<td>469.92 ±20.96</td>
<td>82.116 **</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

*P value is significant ≤ 0.0001 level.

This study revealed that Ghrelin and insulin resistance was dependent of age. Insulin as well as HOMA-IR was significantly different in obese type 2 diabetes patients. HOMA-IR was positively correlated with major obese type 2 diabetes patients related parameters. The correlation was strongest with BMI, WC/Hip ratio, FBG,HbA1c,TG,Atherogenic Index,SBP,DBP and Insulin and with negative correlation with Ghrelin Table (2).

The correlation between the different parameters incases revealed a significant negative correlation between Ghrelin level and each of FBG (r= -0.55), HbA1c (r= -0.60), Insulin (r= -0.44) and HOMA-IR(r= -0.46) as well as between BMI and each of waist circumference and systolic blood pressure (Table 2). Our result demonstrate that there was an inverse correlation between Ghrelin level and cholesterol(r= -0.15), triglycerides(r=-0.38), VLDL(r= -0.38) and Atherogenic Index(r= -0.50) respectively, while there is no significant correlation with LDL. As well as there were significant positive correlation between Ghrelin level and HDL.Negative significant correlation between Ghrelin and insulin and HOMA-IR (r= -0.44 and r= -0.46) respectively.
Table 2: Correlation between Ghrelin hormone level with some parameters in obese type 2 diabetes group

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation coefficient (r) with HOMA-IR</th>
<th>Correlation coefficient (r) with Ghrelin</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m²)</td>
<td>0.39 **</td>
<td>-0.62 **</td>
</tr>
<tr>
<td>Waist/Hip ratio</td>
<td>0.50 **</td>
<td>-0.68 **</td>
</tr>
<tr>
<td>FBG (g/dl)</td>
<td>0.76 **</td>
<td>-0.55 **</td>
</tr>
<tr>
<td>HbA1c(%)</td>
<td>0.73 **</td>
<td>-0.60 **</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>0.37 **</td>
<td>0.38 **</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>0.04 NS</td>
<td>-0.15 *</td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>-0.001 NS</td>
<td>-0.11 NS</td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>-0.17 NS</td>
<td>0.26 **</td>
</tr>
<tr>
<td>VLDL (mg/dl)</td>
<td>0.37 **</td>
<td>-0.38 **</td>
</tr>
<tr>
<td>Atherogenic Index</td>
<td>0.43 **</td>
<td>0.50 **</td>
</tr>
<tr>
<td>SBP</td>
<td>0.42 **</td>
<td>-0.53 **</td>
</tr>
<tr>
<td>DBP</td>
<td>0.31 **</td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>0.89**</td>
<td>-0.44 **</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>-----</td>
<td>-0.46 **</td>
</tr>
<tr>
<td>Ghrelin</td>
<td>-0.46 **</td>
<td>---</td>
</tr>
</tbody>
</table>

NS: Non-significant, ** Correlation is significant ≤ 0.0001 level, BMI = Body Mass Index, BP = Blood pressure, HOMA = Homeostasis Model Assessment.

Genetic Study
1- DNA extraction
The first steps in genetic study were DNA extracted from whole blood, then concentration and purity estimated, the results of these steps show in the Figure (1), and the concentration ranged (45-170) ng and the purity ranged (1.8-2.2).

The Electrophoresis pattern of DNA extracted from blood for obese type 2 diabetes patients and control show in Figure (1).

Figure 1: Electrophoresis pattern of DNA extracted from blood for patients and control, 1% agarose, 75 V, 20 mA for 1h. lane 1-10 DNA from patient, lane 11-19 DNA from control.
2- Ghrelin Gene polymorphisms
The amplification of Ghrelin gene using specific primer was 90bp and as show in Table (3) and Figure (2).

Table 3: Virtual Descriptive of ghrelin gene sequence

<table>
<thead>
<tr>
<th>PCR Products results</th>
<th>Descriptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGGCAGAGGGATGAACTGGAAGTCCGGTTCAACGCCCTTGTGATGTTGGAATCAAGCTGT</td>
<td>>90 bp product from linear template Homo sapiens chromosome 3, GRCh38.p2 Primary Assembly, base 335 to base 424.</td>
</tr>
<tr>
<td>CAGGGGTTCAGTACCACGCAAGCGACAGCCAGG</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Electrophoresis pattern of PCR product for Ghrelin gene, the amplification product was one band 90bp lane 2-9 PCR product for obese type 2 diabetes patients, lane 10-17 PCR products for control, 1% agarose, 75v, 20 Am for 120 min. (10µl in each well).

Genotype of Ghrelin gene polymorphism by PCR-SSCP technique:
The results of ghrelin gene polymorphism using PCR-SSCP technique show significant differences between patient and control, there are two patterns appeared in present study, Two bands and Four bands, Twobands appeared in the (22.35)% and Four bands in (77.64)% of obese type 2 diabetes patients while in control Twobands don’t appeared while Four bands appeared in (100)% as show in Figure (3) and Table (4).

Table 4: Ghrelin gene polymorphisms characterization in obese type 2 diabetes patients and control

<table>
<thead>
<tr>
<th>Variable</th>
<th>Study Group</th>
<th>χ²</th>
<th>P values</th>
<th>Odds Ratio (C.I. 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patient (%)</td>
<td>Control (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 bands</td>
<td>77.64%</td>
<td>100%</td>
<td>12.518</td>
<td>28.4436 (1.6761 - 482.6957)*</td>
</tr>
<tr>
<td>2 bands</td>
<td>22.35%</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Although obesity, defined as excess body fat, is frequently accompanied by insulin resistance, the molecular basis for the link between obesity and insulin resistance has not yet been clarified [22]. The present study confirmed that the serum Ghrelin concentration was significant negative correlation with BMI, WC, SBP and DBP. Some studies revealed that a negative relation between ghrelin concentration and BMI and waist circumference has been detected [23,24]. Regarding ghrelin in this study, it was significantly lower in diabetic patients compared to healthy individuals. Moreover, it was negatively correlated to FBG, HbA1c, insulin resistance. Despite the significant positive correlation that found between ghrelin and HDL and the significant negative correlation with blood pressure, TG and LDL. Other observational studies have reported that low ghrelin levels are associated with insulin resistance and type II diabetes[25,26]. This is mostly explained by higher BMI in subjects with lower ghrelin levels because adiposity influences all other features of the metabolic syndrome[27].

The best possible explanation for the ghrelin level in diabetic patients group supposes a competition between the factors that increase ghrelin level (insulin deficiency) and factors that decrease ghrelin level (obesity, glucose, and hyperinsulinemia). The high percentage of insulin resistance in diabetic patients may support this explanation[28].

Gender difference showed no significant data among our investigated parameter. In a study conducted by Farajallah et al. [29] who reported that higher ghrelin level was negatively associated with measures of obesity, HbA1c, and blood pressure in females and positively associated with increased insulin resistance in Arab males. Insulin resistance is commonly associated with obesity, and HOMA-IR is a sensitive and specific method for its determination. This distinction will be useful in studies of population known to have high genetic predisposition for diabetes in whom the range of HOMA-IR values is likely to be higher than other populations with lower genetic susceptibility. The importance of HOMA-IR index as an adequate tool for determination of IR in obese children was further supported by Makniet et al. [30] who reported that HOMA-IR correlated better with the majority of MS components in both sexes.

Regarding the exact relationship between ghrelin and insulin, conflicting results have been reported. In a study conducted...
by Adeghate et al. [31] ghrelin was found to stimulate insulin secretion from the pancreas of normal and diabetic rats, whereas Egido et al. [32] reported an inhibitory effect of ghrelin on insulin and somatostatin secretion. Schaller et al. [33]. On the other hand, reported that plasma ghrelin concentrations are not regulated by glucose or insulin. According to this study, hyperinsulinemia at concentrations typically seen in IR did not affect plasma ghrelin levels. In the same study, it was observed that insulin at pharmacological concentrations caused a dose-dependent decrease in circulating plasma ghrelin. Glucose in combination with supra-physiological insulin concentrations might cross the blood-brain barrier more easily and influence the central regulation of gastric ghrelin release. Saad et al. [34] reported that insulinemia possibly mediates the effect of nutritional status and energy balance on plasma ghrelin. Notably, insulin could play a pivotal role in regulating body weight through its down-regulating effects on plasma ghrelin concentrations. Erdman et al. [35] have reached the conclusion that in obese subjects with associated hyperinsulinemia, ghrelin suppression is due to insulin, whereas leptin can be important for reduction of ghrelin release during moderate increases of body weight. The results of ghrelin gene polymorphisms using PCR-SSCP technique show significant variation between patient and control, many study investigated association risk allele with obesity. Several genome-wide scans have suggested that certain areas of the chromosome 3, the same chromosome where ghrelin and ghrelin receptor genes are located, might be linked with obesity or metabolic syndrome [36,37]. Polymorphisms in the human GHRL gene and the 5 flanking region have been intensively studied. The most studied exonic SNPs include the Leu72Met located in exon 3 and Arg51Gln, which is located in exon 3 within the last codon of the mature ghrelin protein and disrupts the recognition site of the endoprotease, leading to proteolytic cleavage of the carboxy-terminal 66 amino acids to produce mature ghrelin [38], Table 1. Most of the association studies are focused on metabolic syndrome and T2DM, which are summarized in Table (3). A number of studies have shown associations between GHRL SNPs and obesity or related traits, although the results are contradictory. The Met72 allele of GHRL has been associated with earlier age at onset of obesity and higher BMI [39,40] but negative findings have also been reported [41,42]. The −5 0 1 A>C in the promoter region of the GHRL gene and the intronic + 3 0 5 6 T>C polymorphisms has been shown to associate with obesity and related conditions [43,44] while some studies have failed to find association with these SNPs [45].

References

