Factors Associated with Gestational Diabetes Mellitus in Babylon, Iraq During The Year 2014

Hasan Alwan Baiee1* Maha Fliah2 Dhay Abd Alkareem2 Sara Hamid2 Ayaat Salim2
1College of Medicine, University of Babylon, Hilla, IRAQ
2Medical and Health Techniques College, Kufa, Najaf, IRAQ

*E-mail: hassanbae@yahoo.com

Accepted 16 June, 2015

Abstract
Gestational diabetes has serious consequences on mothers and their children. Gestational diabetes is an increasing public health problem in developing countries including Iraq, the etiology of this health problem is not well understood.

The objective of this study is to identify some factors associated with gestational diabetes in Babylon province. This was a case control study included 85 diagnosed diabetic pregnant women who were selected randomly from patients attending three hospitals in Babylon in addition to three primary health care centers as cases while 85 healthy women selected randomly from women attending maternal child health units as a control group proved to be non-diabetics, the period of study extended from July, 2014 through January, 2015.

Data was collected using a semi structured questionnaire to assess some risk factors associated with gestational diabetes.

Our study showed that the main factors that associated significantly with gestational diabetes (p<0.05) were maternal age after 30 years, smoking, living in urban regions increase weight of baby during delivery (Odds Ratio =3.322), delivery by cesarean section Odds ratio= 2.115). There was also a significant association between family history of diabetes and having gestational diabetes (Odds Ratio =1.64) but here were no significant association between gestational diabetes and the following variable (p>0.05); abortions and family history of obesity.

In conclusion the study showed significant associations between gestational diabetes and progressive age of pregnant woman and smoking. Delivery by cesarean section and the delivery of high weight baby were significantly correlated with gestational diabetes.

Key words: Gestational Diabetes Mellitus, associated factors, Babylon, Iraq

Key words: سكري الحمل المرتبط بسكر الحمل في محافظة بابل - العراق

العوامل المرتبطة بسكر الحمل في محافظة بابل – العراق لعام ٢٠١٤

الخلاصة
سكر الحمل يؤدي إلى عواقب على الأمهات وأطفالهن. تتزايد هذه المشكلة في الدول النامية ومنها العراق, مثل الأسباب الحقيقية لهذه الحالة لا تزال غير واضحة. النتيجة من هذه الدراسة هو معرفة بعض العوامل المرتبطة بسكر الحمل للنساء في مدينة الحللة -محافظة بابل. إن هذه الدراسة هي دراسة للحالات والشواهد تم دراسة 85 حالة اصابة بسكر الحمل اختيرن عشوائيا بعد التأكد من التشخيص ومن المراجعات لثلاث مستشفيات الولادة وثلاث مراكز رعاية صحية اولية في المحافظة, واجتبرت عشوائيا 85 امرأة من غير المصابات. اجريت هذه الدراسة لمدة 9 شهور توزع 2014 إلى نهاية كانون الثاني 2015.جمعت البيانات من خلال ورقة استبانة تضمنت معلومات عن عوامل الخطرة المصاحبة لسكر الحمل.
Introduction

Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or first recognition during pregnancy [1]. The diagnosis of GDM represents detection of a chronic metabolic abnormality during pregnancy [2]. Metabolic adaptations are necessary to ensure the growth and development of the fetus and to meet the altered demands of the mother during pregnancy. Gestational diabetes mellitus is a form of diabetes which affects the mother in late pregnancy [3]. Serious complications such as hypertension and stroke are correlated to GDM [4]. Maternal diabetes can also affect the fetus leading to fetal macrosomia [3, 5, 6]. Gestational diabetes is only a temporary phase; it disappears after pregnancy [7].

Fetal and newborn risks include macrosomia, birth injuries, hyperbilirubinemia, hypoglycemia, transient tachypnea and respiratory distress syndrome. Risks for mothers include preeclampsia, cesarean delivery, and an increased risk of developing type 2 diabetes later in life [8-11]. Children of women with previous GDM also have an increased risk of developing childhood obesity and type 2 diabetes.

Increasing rates of obesity nowadays have led to more cases of undiagnosed type 2 diabetes in women of childbearing age and a rise in the number of pregnant women with undiagnosed type 2 diabetes [12, 13].

Women with gestational diabetes can have favorable pregnancy outcome, if, they follow a proper management program from their health care providers. The main aim of treatment is to keep blood glucose within normal limit. It includes health and suitable dietary regime, proper physical activity, glucose monitoring and insulin injections if needed, the proper management of GDM reduces the risk of a cesarean section birth that high weight babies (macrosomia) may require [14].

Subjects and Methods

This was a Case control study carried out in three hospitals in Babylon province (Babylon maternity hospital, AL-Qasim General Hospital and AL-Hashmia and three primary health care centers in Babylon province from the beginning of July 2014 through the end of January 2015.

Approval of ethical committee of Babylon medical college was taken as well as the acceptance of Babylon health directorate. Informed consents of each participant was also obtained after explaining the aims of the study.

Pilot project was conducted on five patients (gestational diabetics) and five control women (healthy) in order to assess the time needed to collect data from each participant and to identify the main problems that may face the researchers during conducting this study.

Eighty five pregnant patients (after 24 to 36 weeks of gestation) patients proved to have diabetes during pregnancy (the diagnosis was confirmed during the current pregnancy) were selected randomly (by systematic random technique) from patients attending or admitted to AL-Hilla Maternity hospital, AL-Qasim general hospital and Al Hashmia general hospital and three primary health care centers (AL-shawei health care center, Al-hadi health care center, Baieet et al. MJB-2016

The main aim of treatment is to keep...
center, Shaheed al-islam health care center) in Babylon province during the period of the study, diagnosis of cases depended on the repeated assessment of blood glucose done by the health care providers.

Similar number of pregnant women (24-36 weeks of gestation) who attended the outpatient clinics and the maternal and child and maternity health service unit were selected in systematic way and invited to participate in the study after explaining its aim and explaining the importance of screening for GDM, after obtaining the approval and the informed written consent each women in the control group was interviewed by one of the research team and was asked to drink 250 mil of water contain 50mgrams of glucose powder after one hour from drinking the glucose solution, a sample of two milliliters of venous blood was taken to assess the blood glucose level, the cutoff level was 140 mg/dL (each women with post glucose level less than this cutoff considered non-diabetic, healthy control)[15].

The information was collected from both groups using especial form of questionnaire that pertainsdemographic and socio economic characteristics of participants including: (age, place of residence,level of education, family history of diabetes, previous gestational diabetes, number of pregnancies, number of live births, previous Caesarean births, complications during pregnancy, birth of previous child weighed more 4000grams, Previous abortions, family history of obesity, tobacco smoking). Tobacco smoking was assessed by asking questions about current smoking (regular smoking) or she mention that her husband is smokers for at least two years (passive smoker). Those women who quitted smoking for the last three years was considered non-smokers.

Statistical analysis was done by using SPSS version 17 to describe data intables (frequency and percentage).Inferential statistic was used to calculate : Chi square test and Odds Ratios (OR) to find the association between the dependent variable (GDM) and other independent variables (previous history of diabetes, smoking, family history of diabetes, history of macrosomic child, age of pregnancy. P value < 0.05 used as statistically significant level.

Results

Table (1) shows the distribution of cases and control according to age in this table women with gestational diabetes are older than the woman in control group. this difference is statistically significant (p=0.003), the same table shows that most cases are living in urban regions Odds Ratio (3.898) C.I (2.04 - 7.45) p=0.001. Table (2) shows that still births and high weight of babies as well as deliveries in cesarean sections are significantly linked with gestational diabetes, crude Odds Ratios (1.875, 3.322, 2.115) respectively. Abortions are not associated significantly with gestational diabetes odds ratio (0.005).

Table (3) shows that the proportion of both current cigarette smoking and passive smoking are higher among women with gestational diabetes as compared to the healthy control group, this difference is statistically significant (P=0.04).

Negative finding is found regarding the family history of obesity(p= 0.763). The odds ratio of positive family history of diabetes is (1.64) 44.7% of women with gestational diabetes have positive family history of type2 diabetes as compared to the control group.
Table 1: Distribution of cases and control groups by age and place of residence

<table>
<thead>
<tr>
<th>Age group (in year)</th>
<th>Case N=85</th>
<th>Control N=85</th>
<th>Odds ratio</th>
<th>Confidence interval</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>9.4 %</td>
<td>30.6 %</td>
<td></td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>21-30</td>
<td>41.2 %</td>
<td>28.2 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>47.1 %</td>
<td>41.2 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>40</td>
<td>2.4 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residence</th>
<th>Case N=85</th>
<th>Control N=85</th>
<th>Odds ratio</th>
<th>Confidence interval</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>74.1 %</td>
<td>42.4 %</td>
<td>3.898</td>
<td>v. ± 2.04-</td>
<td>0.001</td>
</tr>
<tr>
<td>Rural</td>
<td>25.9 %</td>
<td>57.6 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Odds Ratios of complications associated with gestational diabetes

<table>
<thead>
<tr>
<th>Condition</th>
<th>Case n=85</th>
<th>Control n=85</th>
<th>Odds ratio</th>
<th>Confidence interval</th>
<th>P.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortion</td>
<td>+ve</td>
<td>24.7 %</td>
<td>27.1 %</td>
<td>0.885</td>
<td>0.445-1.758</td>
</tr>
<tr>
<td></td>
<td>-ve</td>
<td>75.3 %</td>
<td>72.9 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Still births</td>
<td>+ve</td>
<td>11.8 %</td>
<td>10.6 %</td>
<td>1.875</td>
<td>0.804-4.375</td>
</tr>
<tr>
<td></td>
<td>-ve</td>
<td>88.2 %</td>
<td>89.4 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight of baby 4kg and more Macrosomic</td>
<td>+ve</td>
<td>28.2 %</td>
<td>10.6 %</td>
<td>3.322</td>
<td>1.439-7.672</td>
</tr>
<tr>
<td></td>
<td>-ve</td>
<td>71.8 %</td>
<td>89.4 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cesarean section</td>
<td>+ve</td>
<td>48.2 %</td>
<td>30.6 %</td>
<td>2.115</td>
<td>1.129-3.961</td>
</tr>
<tr>
<td></td>
<td>-ve</td>
<td>51.8 %</td>
<td>69.4 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abortion</td>
<td>+ve</td>
<td>24.7 %</td>
<td>27.1 %</td>
<td>0.885</td>
<td>0.445-1.758</td>
</tr>
<tr>
<td></td>
<td>-ve</td>
<td>75.3 %</td>
<td>72.9 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Odds Ratios of some risk factors associated with gestational diabetes

<table>
<thead>
<tr>
<th></th>
<th>Case N=85</th>
<th>Control N=85</th>
<th>Odds ratio</th>
<th>Confidence interval</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>Family history of obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ve</td>
<td>30.6</td>
<td>28.2</td>
<td>2</td>
<td>28.2</td>
<td>4.8</td>
</tr>
<tr>
<td>-ve</td>
<td>69.4</td>
<td>71.8</td>
<td>1.646</td>
<td>0.883-3.076</td>
<td>0.016</td>
</tr>
<tr>
<td>Family history of diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ve</td>
<td>44.7</td>
<td>32.9</td>
<td>2</td>
<td>2</td>
<td>3.322</td>
</tr>
<tr>
<td>-ve</td>
<td>55.3</td>
<td>67.1</td>
<td>1.646</td>
<td>0.883-3.076</td>
<td>0.016</td>
</tr>
<tr>
<td>Cigarette smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoker</td>
<td>4.7</td>
<td>2.4</td>
<td>3.322</td>
<td>1.439-7.672</td>
<td>0.04</td>
</tr>
<tr>
<td>Non-smoker</td>
<td>85.9</td>
<td>102.6</td>
<td>1.646</td>
<td>0.883-3.076</td>
<td>0.016</td>
</tr>
<tr>
<td>Passive smoker</td>
<td>15.3</td>
<td>10</td>
<td>1.646</td>
<td>0.883-3.076</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Discussion
Iraq was advancing through the epidemiological transition from infectious disease to chronic and degenerative disease[16,17].
Our study showed that progressive age of pregnant women is associated with gestational diabetes mellitus this finding is similar to the finding reported by another study carried out by Hameed N in Baghdad teaching hospital during 2011 study[18].
Our study showed that macrosomia was common among women with gestational diabetes this finding agrees with findings of other studies [19,20]. This may reflect the high proportion of cesarean
section deliveries among women with gestational diabetes. This study shows that there is an association between family history of diabetes, and gestational diabetes, this findings goes with the findings of others [20].

Obesity is a common problem in our society[21] there is strong relationship between being overweight or obese and family history of diabetes reflecting the importance of genetic factor in developing of this problem [20], evidences from different researches confirmed the relationship between diabetes mellitus type 2 and increasing body weight and obesity[21].

Still birth rate is common among gestational diabetic pregnant women as compared with non-diabetic control groups , still birth is two times more likely to occur among gestational diabetic women as compared with non-diabetics, still births proportion was found to be high among women with diabetes in a study carried in babol,northern Iran[22], similar finding was reported by researchers from England[23].

Negative association was detected in this study between gestational diabetes and repeated abortions this finding disagreed with the finding of other study conducted in Saudi Arabia[24].

In this study cesarean sections are common among gestational diabetes this finding may be explain by the increase of macrosomia among diabetic women this finding is in line with report of other local study carried out in Iraqi teaching hospitals during the year 2011 [24],the current study shows that women living in Urban residence are exposed to GDM as compared with women living in Rural residence this finding is similar to the finding of Wally RH who found over all prevalence to be higher in urban women versus in suburban and rural women[25].

The current study reveals that there is a significant association between tobacco smoking (current maternal and passive smoking) and GDM, this finding goes in line with the report of other researchers[26]but disagree with the finding of other studies[27,28]. Tobacco smoking is linked with insulin resistance and hyperinsulinemia outside pregnancy as proved by many studies [39,30]. In this study there is also a statistical significant association between residence and gestational diabetes, urban dwellers are significantly affected by gestational diabetes, this may be explained by the stressful pressure associated with dwelling in urban regions as compare to the rural regions, many studies showed that living under stressful pressure lead to chronic hyperglycemia[19].

Conclusion

Age of pregnant women and living in urban regions, positive family history of diabetes, tobacco smoking are significant independent factors associated with gestational diabetes as high rates of macrosomia and delivery with cesarean sections were associated significantly with gestational diabetes mellitus.

Acknowledgements

Thanks are due to all women who participated in this study for their cooperativeness and patience, our gratitude is to all the medical and health care staff who supported and facilitated our work.

References

2. Lister S. Fat’s spreading as quarter of Britons now register obese on the size scale. The Times, 17 December 2005.

11. Hameed NN. Naoom BN, Shareef AJ. Transient Tachypnea of Newborn in Neonatal Care Unit of Children Welfare Hospital Medical City/Baghdad. J Fac Med Baghdad.2015;57(1):6-9

19- Baum, D, Prote, D, Jr. Stresshyperglycemiaand the adreneregulation of pancreatic hormones inhypoxia. Metabolism.1980;29;1176-1185.

23. Hulman N, Rell R, Murphy H. Women with pre-gestational diabetes have a higher risk of stillbirth at all gestations after 32 weeks. Diabetic Medicine.2014,31(9): 1129-32

25. Wally RH. A comparative study of prevalence of Gestational Diabetes

Wendl and EM, Pinto ME, DuncanBB, Belizán JM, Schmidt28.

