Original Research Article
Relation of Follicular Fluid C-Reactive Protein Level to Intracytoplasmic Sperm Injection Outcome at Al-Najaf Fertility Centre

Ban Dhahir Thabbah1* Sami Raheem Al-Katib2 Basima Shamki Al-Ghazali2
1 Ministry of Health Babylonian Health Center, Hilla Teaching Hospital, Hilla, IRAQ
2 Faculty of Medicine, University of Kufa, Kufa, Najaf, IRAQ

*E-mail: ban_dahir@yahoo.com

Abstract

C-reactive protein is a protein that act as a sensitive marker in inflammatory processes, rises following hormonal stimulation it may affect fertility and intracytoplasmic sperm injection (ICSI) outcome. this study aimed to measure follicular fluid proinflammatory mediator as C-reactive protein and their relation controlled ovarian hyperstimulation protocols and to interpret these findings according to the cause of subfertility and subfertility treatment outcome. This study was carried out on 110 subfertile women aged between 18-45year (30.01±6.02), referred to fertility clinic in Al-Sadder teaching hospital at Al-Najaf city who classified into four group according to the cause of subfertility, estradiol(E2) also measured on day of HCG and CRP were measured in follicular fluid collected on day of pickup using special ELISA kit then correlate the result to ICSI outcome. The Result of this study reported that the pregnancy rate was 34.55% for embryo transferred after 48-72 hours, there was non-significant increment in pregnant than non-pregnant women regarding FF-CRP (P>0.05), also non-significant difference in FF- CRP in subfertile women according to cause of subfertility(p=0.303), higher FF-CRP value were in ovulatory factor female. Regarding ICSI parameters, there was positive non-significant correlation between FF- CRP and embryo number, Grade I, Grade II, embryo transferred, fertilization rate. so conclusion of this study minimal increment in these inflammatory markers would aid and share in success ICSI outcome.

Key words: CRP, follicular fluid CRP, E2, intracytoplasmic sperm injection.

Abbreviations: E2: estradiol, COH: controlled ovarian hyperstimulation, PCOS: polycystic ovarian syndrome, NO: number, GI: grade I, GII: grade II.

الخلاصة

بورتين C التفاعلي هو البروتين الذي يعمل كعلامة تحسس لعملية الإلتهاب الحاضرة في الجسم ويرتفع بعد التشنج البوليومي وقد يؤثر على الخصوبة ونتائج البنى الجنوني. واتبعت هذه الدراسة إلى قياس مستوى وسائط الإلتهاب في السائل الحويصلي مثل بروتين C التفاعلي وعائلته بورتونوكليت تشبيط المهض وترجمة هذه النتائج حسب سبب العقم ونتائج علاج العقم. طبقت هذه الدراسة على 110 أورمًا،عيد متوسط تتراوح في سن 18-45 سنة بتصدف (30.01±6.02) وقدمنا إلى أربع مجتمع حسب سبب العقم. وقعت الدراسة في مركز الخصوبة في مدينة النجف للفترة من آذار إلى تشرين الأول 2014، وتم قياس مستوى المستاجبون في الدم في يوم اعطاء هرمون. وفي يوم الباقي، يتم قياس بروتين C التفاعلي في السائل الحويصلي باستخدام جهاز الإليزيا ومقارنة النتائج HCG. وقعت هذه الدراسة إلى معدل الحمل لدى النساء بصورة عامة كان 6.5%، للكل، تراجع حالياً استعودته بعد 48-72 ساعة. وكانت هناك زيادة غير معنوية بالنسبة لبروتين C التفاعلي في السائل الحويصلي لدى النساء الحامل عند غير الحامل. كذلك بالنسبة لمستوى سبب العقم فإن هناك زيادة غير معنوية بين النساء ذات العقم المنخفض والمحوري. أما فيما يخص نتائج الفحص المجلي فإن هناك علاقة إيجابية غير معنوية بين مستوى بروتين C التفاعلي وعدد الأجنة. النتائج المتصلة بالدرجة الأولى والثانية والاجمالي للعلامات وأعمال الحالب. اتفق عليه أن هذه الدراسة استنتج عن زيادة البسطة في وسائل الإلتهاب مستعملاً على نجاح عملية الحقن المجلي.
Introduction

C-reactive protein (CRP) can be defined as an acute phase protein and its production is from the liver. Researchers found that after estrogen administration CRP was increased [1]. The upsurge in the concentration of IL-6 that secreted from macrophage will result in acute phase response [2]. Other site of IL-6 secretion is adipocytes [3], also is secreted in response to many acute and chronic inflammatory situation and act a primary defense such as viral, bacterial, or fungal infections, malignancy, rheumatic and other inflammatory diseases, necrosis and tissue injury. Leading to release of interleukin-6 and other cytokines, which in turn promoting the liver to synthesize CRP and fibrinogen [4].

Also in other studies researchers report that follicular fluid CRP level was lower than serum CRP indicating that the ovarian production of CRP was little or absent, and previous literatures lack a data about granulosa cell CRP production. Challis et al, stated that tissue remodeling and effective implantation require inflammatory microenvironment (that accompanied by increased chemokines, cytokines and their receptors) in the first trimester of pregnancy [5]. On other hand too much inflammatory reaction may lead to recurrent abortion, further pregnancy complications like preterm labour or pre-eclampsia [6,7].

Materials and Methods

The protocol of our study was planned according to Kufa declaration for the ethical philosophies of medical research, as a prospective cohort study with acceptance from the committee of ethical research at Physiology and Obstetrics and Gynecology Departments, Faculty of Medicine, University of Kufa. A total of 120 included subfertile couples referred to the fertility center of Al-Sadder teaching hospital in Al-Najaf city between the period from March to October 2014. All women considered, and underwent 120 IVF-ICSI cycles after a certain ovarian stimulation protocol, 110 reached the ovum pick up stage, the remained either cancelled cycle or had no stimulated oocyte by ultrasound. All 110 were distributed into 4 subgroups in relation to cause of subfertility: 32 female factor (Ovulatory factor, endomatriosis), 54 male factor, 16 Tubal and 8 Unexplained subfertility. all were candidate for ICSI according to the indication. they were of reproductive age ranging from 18-45 years old. Free from hepatitis and HIV (by screening test).

Women with a recent history of infection or inflammation or surgery or any condition that may suspected to increase CRP were excluded from the study. all of these women underwent ovulation induction with different hyperstimulation protocol: either long (No=14), short (No=66) and antagonist (No= 30) protocols depending on hormonal conditions, timing, and ovarian reserve status of the women on the discretion of the clinician. On day of HCG prescription, Serum sample obtained from women to measure E2 by Biomerieux, SA, France kit using VIDAS, After a period of time under vaginal ultrasound guidance HCG injection was given to trigger the final stages of oocyte maturation with oocyte pick up guided by ultrasound was performed 34-36 h later and follicular fluid was aspirated from patient on day of pickup and centrifuged and freezeed till the time of measurement using C-Reactive Protein (CRP) ELISA Kit (Product No. ABIN1874314). Embryos classified according to their morphology and percentage of fragmentation, then good quality embryos were returned after a period ranging from 3-5 days.

Then after 2weeks HCG was measured in blood to determine biochemical pregnancy.
Statistical analysis in this study was performed using SPSS (Statistical Package for Social Science; Version 20) program. Expression of values as mean ± SD, independent t-test was used. Also one-way ANOVA was used to evaluate differences of means among multiple groups. Pearson's correlation analysis had been used to correlate among the measured variables and other clinical variables or data.

Results

Pregnancy rate was 34.55% (38 pregnant, 72 non pregnant).

<table>
<thead>
<tr>
<th>TEST</th>
<th>All patients (mean ±SD)</th>
<th>Pregnant (mean ±SD)</th>
<th>Non pregnant</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follicular CRP mg/l</td>
<td>0.24±0.76mg/l</td>
<td>0.46±1.17</td>
<td>0.13±0.4</td>
<td>0.068</td>
</tr>
<tr>
<td>Peak E2 (Pmol/L)</td>
<td>2065±909.5</td>
<td>2242.8±910.2</td>
<td>1937±905.8</td>
<td>0.282</td>
</tr>
</tbody>
</table>

One of the inflammatory markers in the follicular fluid is the CRP. One way ANOVA test describes the distribution of FF CRP according to the cause of subfertility figure (1) p=0.303, higher follicular fluid value were in ovulatory factor female this may be attributed to inflammatry a etiology of ovulatory factor which was mainly due to PCOS.

To investigate the expectedness of ICSI variables and E2, FF-CRP levels for pregnancy we use Receiver operating characteristic (ROC) curves. Also by this analysis we can determine the sensitivity and specificity and the result were described as mean ±SD., with p value less than 0.05 that was reflect a statistical significant[8].

![Figure 1: Distribution of FF-CRP according to the cause of subfertility](image)
C-reactive protein between different used stimulation protocols

There was non-significant difference in FF CRP between different protocol used (p value >0.05), p=0.196.

Figure 2: mean and standard deviation in CRP among patient according to the used protocol.

There were significant or highly significant correlation between peak E2 and most ICSI outcome (oocyte number, MII, injected, pronuclear) with significant correlation with embryo number and nearly significant positive correlation with GI,GII and increase pregnancy rate, with positive significant correlation between FF-CRP and PN, and positive non significant correlation with most ICSI variables as shown in table (2):

Table 2: Correlation of peak E2 and FF-CRP to some ICSI variables.

<table>
<thead>
<tr>
<th>ICSI outcome variable</th>
<th>Peak E2</th>
<th>FF-CRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oocyte number</td>
<td>0.594**</td>
<td>0.001</td>
</tr>
<tr>
<td>MII</td>
<td>0.619**</td>
<td>0.001</td>
</tr>
<tr>
<td>injected</td>
<td>0.603**</td>
<td>0.001</td>
</tr>
<tr>
<td>pronuclear</td>
<td>0.579**</td>
<td>0.001</td>
</tr>
<tr>
<td>Embryo NO.</td>
<td>0.389*</td>
<td>0.012</td>
</tr>
<tr>
<td>GI</td>
<td>0.287</td>
<td>0.076</td>
</tr>
<tr>
<td>GII</td>
<td>0.292</td>
<td>0.071</td>
</tr>
<tr>
<td>Embryo transferred</td>
<td>0.304</td>
<td>0.056</td>
</tr>
<tr>
<td>FR%</td>
<td>-0.114</td>
<td>0.503</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>0.168</td>
<td>0.282</td>
</tr>
</tbody>
</table>

Table 2: Correlation of peak E2 and FF-CRP to some ICSI variables.

MII: metaphase II, GI,GII: grade I,II embryo, FR: fertilization rate *level of significance below 0.05, ** level of significance below 0.001. r: correlation coefficient, p: level of significance.

Regarding the correlation between peak E2 and FF-CRP there was positive non significant correlation between E2 & CRP
ROC analysis revealed that the CRP had the largest area under the curve (AUC:0.634 indicating that threshold of 0.45 gave a sensitivity of 82%, and specificity of 42%). Followed by E2 (AUC) 0.602, a threshold of 947.5 gave sensitivity of 100% and specificity 24%.

<table>
<thead>
<tr>
<th>variables</th>
<th>AUC</th>
<th>Cut off point</th>
<th>sensitivity</th>
<th>specificity</th>
<th>CI 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF-CRP</td>
<td>0.634</td>
<td>0.45</td>
<td>82%</td>
<td>42%</td>
<td>0.392</td>
</tr>
<tr>
<td>Peak E2</td>
<td>0.602</td>
<td>947.5</td>
<td>100%</td>
<td>24%</td>
<td>0.429</td>
</tr>
</tbody>
</table>

CI: confidence interval

Discussion

Pregnant women having higher peak E2 than non-pregnant one with p value >0.05 as in table (1) that was in agreement with Al-Ghazali & Al-Jarrah who prove that E2 level at day of HCG injection was more in women that have got pregnancy than in women that haven't got pregnancy which reflects good ovarian response, but there were no significant differences [9]. The follicular fluid CRP mean was 0.24±0.76mg/l, while its level in pregnant women was 0.46±1.17 and in non-pregnant women was 0.13±0.4 with p value 0.068 as shown in table (1) these result was in agreement with Orvieto et al., they found that on day of pick up FF-
CRP levels was significantly increased beyond the cutoff point of 0.5 mg/dl, meaning a presence of an inflammatory reaction. Orrvieto et al. found that although the positive correlation was found on HCG day, there was no correlation between CRP and E2 levels on day of pickup because CRP still increased although E2 decreased meaning that the inflammatory response was significantly stimulated by the exogenous HCG [10]. Furthermore the above result was in agreement with Sacks, et al who found the presence of significant high CRP levels in pregnant women than non-pregnant beyond IVF/ICSI treatment (COH) protocol especially 2 weeks after oocyte retrieval and collection [11].

During controlled ovarian hyper-stimulation (COH), serum CRP was significantly elevated until the peak estradiol concentration, and following HCG administration still there was further increment. With no observed significant variation between follicular fluid and serum and CRP levels. also no correlation existed between serum CRP level and subfertility cause, variables of ICSI treatment or pregnancy rate [10, 25]. CRP does not have diurnal alterations, but administration of exogenous estrogen increases its level [12].

Redman and Sargent reported that the presence of inflammatory reaction in pregnant women rather than in non-pregnant, consolidating in their result and confirming that ordinary pregnancy considered as inflammatory condition as previously mentioned [13]. Further studies reporting by endometrial biopsy that endometrial local injury resulted in elevated implantation and pregnancy rates in a cycle preceding IVF/ICSI treatment [14-16], that might be explained possibly as a local injury stimulated decasualization and the wound healing effect, secretion of growth factors and inflammatory mediators, and accompanied by invasion of immune cells.

One way ANOVA test describes the distribution of FF-CRP according to the cause of subfertility figure (1), higher follicular fluid value were in ovulatory factor female this might be attributed to inflammatory a etiology of ovulatory factor which was mainly due to PCOS, with non-significant difference between group of subfertility (p=0.303). this result was proved by other researcher , Several investigations had proposed that women with chronic anovulation and polycystic ovary syndrome (PCOS) were in a constant chronic inflammatory status, while others describe chronic anovulation and PCOS as a low-grade inflammation disorder [17-19].

In PCOS women positive correlation was existed between CRP levels and insulin resistance, fatty mass and body weight with 2 fold elevation in circulating CRP [19-21].

While in figure (2) there was non-significant difference in FF-CRP between different protocol used (p value >0.05), p=0.196. this result was consolidated by Arefi, et al., 2010 [22] reported that there was different patterns (that may be considered as indicator of ICSI treatment successful outcomes) of increment in CRP level as a result of inflammatory process caused by ovulation induction. Especially on embryo transfer day relative small increment in CRP level accompanied successful outcome.

Regarding effect of CRP on embryo quality and fertilization rate (Table 2) there was positive non-significant correlation between FF-CRP and most ICSI variables. These result were in agreement with Bódis, József, et al., 2014 [23] whom found that CRP in serum and FF did not influence the number of oocytes and embryos.

Sacks, et al demonstrating that any difference in maternal-fetal cross point might be associated with abnormal CRP response whether deficient or elevated that may occur in women with abortion. Beyond these results CRP might be considered as a predictor marker or screening method for selection of women who need immunotherapy even in non
ICSI conception and measuring CRP concentration in pregnancy failure [11]. Jabbour et al. pointed out the importance of inflammatory pathways throughout reproductive physiology, from ovulation, to menstruation, implantation and onset of labor, all now gradually perceived as inflammatory processes [24]. Here presented study suggests that creation of good embryo quality now also might had to be added as a process dependent on inflammatory pathways. Albertini recently described the ovaries as immunological "hot-spots" [25] based on the recognition that increasing numbers of fertility-associated genes in the ovary also have immunological functions.

References

