Abstract
The Mycoplasma found most frequently in genital tract and play their putative roles urogenital tract of women. In this study, three species of mycoplasma represented by M. pnumoniae, M. primatum and M. pirum were isolated from urogenital tract. In this study, one hundred vaginal swabs were taken from pregnant, non pregnant and control women. Cultures were made in Monophasic Diphasic Culture Setup (MDCS). The purpose of this study was to determine association of M. pnumoniae with genital tract infection, and isolation rate of M. primatum and M. pirum form three population of women in Basrah.

Key word: Genital tract infection, Genital mycoplasma, MDCS.

Introduction:
Mycoplasmas are a unique group of bacteria, characterized by their small cell size (0.3-0.8 µm), small genome size and lack of rigid bacterial cell wall[1]. Although mycoplasmas are generally commensal parasites in human, some species are real pathogens and are capable of causing a wide variety of disease[2]. They can be isolated as commensals or pathogens from plants, insects, animals and humans[1]. Of these M. hominis M. genitalium. M. pentrans and Ureaplasma Urealyticum are of particular interest, as is M. pirum and M. primatum which are also found in the genital tract[3]. M. pnumoniae is an important cause of human respiratory disease, accounting for 19 to 25% of total pneumonia[4, 5]. A study indicated that M. pneumoniae also infect urogenital tract[6]. M. pnumoniae and M. pirum posses a specialized terminal organelle (tip-structure) by which they adhere to the fallopian tube epithelium[7]. However, M. primatum has been detected by PCR in the lower genital tract of 7-20% of women[8]. Patients with AIDS are of great risk factor for infection by these organisms[9]. Finally, the mycoplasma found most frequently in the genital tract and their putative role have been described. The aim of the present study was to investigate whether the presence of M. pnumoniae ,
M. primatium and M. pirum in the lower genital tract of women is associated with infection.

Materials and Methods

Population:
A total of 100 vaginal swabs were collected from women whose age ranged between (<19-≥40) years old who admitted to the gynecology department of the Al-Fayhaa hospital were included in this study. They were divided in three groups, 33 pregnant women, 33 non pregnant women and 34 healthy women being used as control.

Collection of specimens
Vaginal swabs were collected by aiding gynecologists and inoculated in modified casein digested medium by Monophasic-Diphasic Culture Setup (MDCS) method [5].

Identification of Mycoplasmas
The differentiation amongst species of genital mycoplasmas was achieved through biochemical tests represented by fermentation of carbohydrate, Arginine deaminase, Tetrazolium reduction, Hemolysis, Hemadssorption [10], Gelatin liquefaction, film and spot in egg yolk [11], coagulated serum digestion and phosphatase test [12].

Results
Characterization and Identification of isolated mycoplasmas were based on morphological traits which included colonial morphology, growth properties and slides prepared with negative staining, Giemsa stain and Gram stain. The differentiation between species of mycoplasmas was achieved through biochemical tests as mentioned in materials and methods [figs. 1, 2, 3]. In this study, M. primatium and M. pirum represent the first isolation in Iraq and with the Monophasic-Diphasic Culture Setup (MDCS) system. Beside, that, the first isolation for M. pneumoniae from genital tract by the same system. The colonial growth was observed on the upper of the slant. However, approximately 96 hrs. period was necessary for full development of colonies on MDCS to show the fried egg appearance. One hundred women were included in the study and were divided into four groups (table 1). The results indicated that there is a correlation between genital mycoplasma and age compared with control group.

Fig. 1. The fried-egg colonies of M. primatium (X65)
Fig. 2. The fried-egg colonies of *M. pirum* (X65)

Fig. 3. The fried-egg colonies of *M. pnumoniae* (X100)

Table (1): Distribution of genital mycoplasmas according to different age group

<table>
<thead>
<tr>
<th>Age-year</th>
<th>No. of tested women</th>
<th>No. (%) of Mycoplasma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M. pnumoniae</td>
</tr>
<tr>
<td>≤19</td>
<td>7</td>
<td>1 (14.2)</td>
</tr>
<tr>
<td>19-29</td>
<td>24</td>
<td>2 (8)</td>
</tr>
<tr>
<td>30-39</td>
<td>20</td>
<td>1 (5)</td>
</tr>
<tr>
<td>≥40</td>
<td>15</td>
<td>1 (6.6)</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>5 (7.4)</td>
</tr>
</tbody>
</table>

In total 2 genital mycoplasme isolation in pregnant women more than other groups .

Table (2): Isolation of genital Mycoplasmas frequency according to social status

<table>
<thead>
<tr>
<th>Groups</th>
<th>M. pnumoniae</th>
<th>M. primatium</th>
<th>M. pirum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnant women 33</td>
<td>3 (9)</td>
<td>7 (21.2)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Non-pregnant women 33</td>
<td>2 (5.8)</td>
<td>5 (14.7)</td>
<td>2 (5.8)</td>
</tr>
<tr>
<td>Control group 34</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
The isolation rate of genital mycoplasme from low moderate level of socioeconomic status rather than high level (table 3).

Table (3): Distribution of genital mycoplasmes in relation of socioeconomic status

<table>
<thead>
<tr>
<th>Level of socioeconomic status</th>
<th>No. of patients</th>
<th>No. and (%) of women tv in</th>
<th>M. pneumoniae</th>
<th>M. primatium</th>
<th>M. pirum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>30</td>
<td></td>
<td>2 (6.6)</td>
<td>9 (30)</td>
<td>2 (6.6)</td>
</tr>
<tr>
<td>Moderate</td>
<td>21</td>
<td></td>
<td>2 (9.5)</td>
<td>2 (9.5)</td>
<td>1 (4.7)</td>
</tr>
<tr>
<td>High</td>
<td>15</td>
<td></td>
<td>1 (6.2)</td>
<td>1 (6.2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td></td>
<td>5</td>
<td>12</td>
<td>3</td>
</tr>
</tbody>
</table>

Discussion

Diagnosis of mycoplasmal infection by isolation of the organisms is difficult [13]. The use of diphasic medium increased the number of isolates by 26% compared with direct isolation on plates[4]. The MDCS method was used successfully in the present study for the primary isolation of genital mycoplasmas from clinical specimens, also this method exhibited several advantages[14].

Other study was found that there is a tendency for mycoplasma infected patients to have poorer cervical mucous than control group[15]. Comparison of women and it was suggested that low recovery rate are found in post menopausal women suggested that the occurrence of genital mycoplasmas[16].

Certainly, reports of the isolation of *M. pneumoniae* from genital tract are rare[17]. This exemplified by the isolation of *M. pneumoniae* from the lower genital tract of women[6]. The degree of colonization with genital mycoplasmas is related to sexual activity and to the number of sexual partners[18].

Isolation of these bacteria remains important, as they are sexually transmitted and can be associated with an increased risk of pathogenic condition and pregnancy abnormalities in women[3]. Genital mycoplasmas were recovered equally from pregnant and non pregnant women[18].

However, colonization of these microorganisms in human are linked to younger age, lower socioeconomic status and sexual activity[19, 20]. In the light of the results of the present study, the pathogenic role of these bacteria in women genital tract disease remain questionable.

References

